

Welcome!

Webinar #31: Modelling M on N Systems

13 Feb 2019

Agenda:

- * Introduction
- * Modelling M on N systems in GTPM, Design and Simulation
- * Modelling M on N systems in STPM, Design and Simulation
- * Using TFX for modelling M on N systems: standalone, link or import
- * Design a M on N plant in TFX with variable M and N using scripts
- * Q & A Session

Thermoflow Training and Support

- Standard Training
- On site training course
- User's Meetings / Advanced Workshops
- Webinars when new version is released
- Help, Tutorials, PPT, Videos
- Technical Support

→ Feature Awareness Webinars

Feature Awareness Webinars

- 1- Assemblies in TFX, June 2016
- 2- Scripts in Thermoflow programs, GTP-GTM-TFX
- 3- Multi Point Design in GTP-GTM
- 4- Reciprocating Engines in TFX
- 5- TIME in GTM

Thermoflow

- 6- Matching ST Perfromance in STP
- 7- Modeling Solar Systems in TFX
- 8- Combining THERMOFLEX & Application-Specific Programs
- 9- Methods & Methodology in GT PRO & STEAM PRO
- 10- Supplementary Firing & Control Loops in GT PRO & GT MASTER
- 11- The Wind Turbine Feature in Thermoflex
- 12- Modelling GT's in Thermoflow programas-1
- 13- Thermoflex for on line and off line performance monitoring
- 14- Tflow 27, what's new
- 15- Modelling GT's in Thermoflow programas-2
- 16- Multi Point Design in GTP-GTM
- 17- Total Plant Cost in TFX
- 18- Steam Turbine Tunning
- 19- User Defined Components in TFX
- 20- Cooling System Optimization

31- Modelling M on N Systems

M on N Systems

- **GTPM**: **M** x Gas Turbine + **M** x HRSG + **N** x Steam Turbine-Cooling System
- **STPM**: **M** x Boiler + **N** x Steam Turbine-Cooling System
- **TFX:** Any Combination

- In GT Pro the user can select:
 - A number of **M** GT units and equal number of HRSGs \rightarrow GT-HRSG = 1 block
 - A number of **N** ST units and equal number of Cooling Systems
 - M and N can be different unless you select a "Single Shaft" Configuration
 - All the GT, HRSG, ST and Cooling Systems must be exactly the same: there is only one input for all the inputs related to them

Design M on N Systems in GT Pro, Inputs, Select M

🚰 GT PRO 28.0 - C:\U	Jsers\imart\Do	ocuments\Thermoflow 28\GTPRO.GTP										- 0	×
File View Options	s Tools Wi	indow ExcelLink Scripts Help											
Navigator	Number of ga	is turbines 3 Single shaft GT/ST configur	ration	Did you kno -> its nomina -> it may be -> it may be	w that if you can al power may be filtered out by 'SI filtered out by 'SI	not find a particular e outside the power rai now new specs only now 50/60 Hz' switch	engine: nge set below 'switch h						
Start Design	Display Ent	ire GT Library Display Partial GT Library		-> it may be	listed under a dif	ferent name, click 'S	how other names'	checkbox					
Plant Criteria	Engine Se	election Filter		LICK the red	button to see tr	e whole list, of the w	white one to use the	e filter.					
GT Selection	Show engine	es rated from 10 MW Up to 220 MW		Show new specs only									
GT Inputs	Sort by:			Show 50 Hz engines						***	Reference price for ba	asic genset with inc	cluded
ST-HRSG	Manufa	cturer C Smallest to largest power C Largest to smallest power		Show other name(s)						app esti	ourtenances, excluding mate for a Simple Cvc	g stack. It is not a de plant.	cost
HBSG Inputs									6 5			D 1	
Water Circuite	ID	Manutacturer & Model	Shafts	RPM	PR			Air Flow	Gen Power		LHV Elt	Price***	Ĥ
HBSG Laward						L.	L	011	K#G	KUTKHII	70	mm*	
	Kawasaki					_	-	-					
Looling System	371	Kawasaki GPB180D	1	9420	18,6	1249	533	211	18045	10576	34,0	8,7	
ST Inputs	474	Kawasaki GPB300D	2	5600	25,0	1260	469	313	30137	8946	40,2	14,4	
Environment	MAN Turk												-11
Other PEACE	269	MAN TUBBO THM 1304-11	2	8600	11.0	996	487	172	10760	12090	29.8	5.3	
Economics	294	MAN TURBO THM 1304-12	2	8600	11,0	1010	494	174	11520	11779	30,6	5,7	
Gasification													
Decalination	Mitsubishi I	Hitachi Power Systems											
Desaination	35	MHPS MF111B	1	9660	14,6	1135	526	200	14838	11510	31,3	7,2	_[]
Compute	279	MHPS H-15	1	9710	14,6	1177	546	188	15086	11257	32,0	7,4	_
	280	MHPS H-25 (28)	1	7280	14,6	1260	547	319	28150	10568	34,1	10,6	_
Text Uutput	372	MHPS H-25 (32)	1	7280	14,7	1193	557	341	31820	10329	34,9	10,7	_
Graphics Output	617	MHPS H-25 (42)	1	7280	19,0	1300	569	405	41035	9949	36,2	12,3	
PEACE Output	4/8	MHPS H-100 (110)	2	3000	19,9	1350	538	1088	112440	9368	38,4	22,8	
Carrying on	NPO Satur	n											
Multiple Designs	423	Saturn GTE-110	1	3000	14,7	1210	517	1283	110000	10445	34,5	27,6	
(MACRO)		n.											
Run from Excel	Pratt & Whi		2	2000	10.0	1100	400	200	250.40	0540	07.7	11.0	
(ELINK)	307	P+W F18 SWIIT Pac 30	3	3000	19,3	1160	463	296	25048	9543	37,7	11,8	
Ult Design Simulation (GT MASTER)	308	P+W F18 Swift Pac 30	3	3000	20,2	1221	480	307	27555	9437	38,1	12,1	
Euly Flavible Dari	309	P+w F18 Swift Pac 60	3	3000	19,3	1160	463	593	50300	9506	37,9	17,2	
Fully-Flexible Design													

Thermoflow

Design M on N Systems in GT Pro, Inputs, Select N

Thermoflow

Thermoflow

Design M on N Systems in GT Pro, Outputs

p[bar], T[C], M[t/h], Steam Properties: IAPWS-IF97

→ Example: How to design a system in GT Pro with different Gas Turbine models (2x1 2P combined cycle system, similar size GTs):

- Create 3 GT Pro files:
 - File 1: 2xGT (1)-HRSG (1) + 1xST
 - File 2: 1xGT (1)-HRSG (1)- ST(1)
 - File 3: 1xGT (2)-HRSG (2)

 \rightarrow Check the Pinch & ST inlet P and T

- Add the steam from HRSG (2) from File 3 to the ST(1) in File 2

File 2b

Components Design from each file

	GT	HRSG	ST	CS
File1	2xGT1	2xHRSG1	ST1	CS1
File2	1xGT1	1xHRSG1	ST2	CS2
File3	1xGT2	1xHRSG2		
File2b	1xGT1	1xHRSG1	ST	CS

Integration of Results

- Gross Power
- Net Power Auxiliaries
- Fuel consumption Heat input
- Efficiency
- Plot
- Cost Estimation
- Financial

Integration of Results, Energy

		Sum 2b+3	File 2b	File 3	File 1
Gross Power	kW	247.408			257.332
GT	kW		83.585	78.056	
ST	kW		85.767		
Auxiliaries **	kW	7.026	4.742	2.284	7.227
	% / GP	2,84%			2,81%
Net Power	kW	240.382			
Heat Input-LHV	kW	448.871	233.178	215.693	
Efficiency	%	53,55%			53,63%

Integration of Results, Cost

		Total	Sum 2b+3	File 2b	File 3	File 1
Cost Estimation	M€		246,52	156,4	90,1	238,3
Net Power	MW		240	165	76	250
Specific Cost	USD/kW	?	1026	950	1190	953
Plot	На	?		2,066	1,351	2,508

- Other Options
 - ELINK
 - Link in TFX
 - Import to TFX

Design M on N Systems in GT Pro using ELINK

File 2b

	Computation Message ->	OK	ОК	
INPUT VARIABLE DESCRIPTION	Units	Input	Input	
Addition/extraction @ HPS3 exit (plan	t total) t/h	105,9	105,9	
Addition/extraction @ IPS2 exit (plant	total) t/h	16,06	16,06	
OUTPUT VARIABLE DESCRIPTION	Units	Output	Output	
Plant gross output	kW	169.352	169.341	
Plant net output	kW	164.611	164.600	
Plant total fuel LHV chemical energy in	put			
(77F/25C)	kW	233.178	233.178	
HPT pressure before stop valve	bar	86,0	86,0	
HPT temperature before stop valve	С	557,0	557,0	
HP/IP/LP Casing: Group LPTL - Group in	nlet pressure bar	10,3	10,3	
IP steam induction to LPT, after pipe T	emperature C	277,3	277,3	

File 3

Zölimgleavveavv			
Computatio	n Message ->	ОК	ОК
INPUT VARIABLE DESCRIPTION	Units	Input	Input
Main HP process pressure / HPT pressure before			\frown
stop valve	bar	86,0	86,0
Main HP process temperature	С	557,0	557,0
Main IP process pressure / IP steam pressure @			1 1
turbine	bar	10,3	10,3
Main IP process temperature	С	277,3	277,3
			\smile
OUTPUT VARIABLE DESCRIPTION	Units	Output	Output
Plant gross curput	kW	78.056	78.056
Frant net output	kW	75.771	75.771
Plant total fuel LHV chemical energy input			
(77F/25C)	kW	215 693	215.693
HP superheater steam mass flow	t/h	105,9	105,9
IP superheater steam mass flow	t/h	16,06	16,06

		Total	1	2
Gross P	kW	247.397	169.341	78.056
Net P	kW	240.371	164.600	75.771
Aux	kW	7.026	4.741	2.284
Heat Input LHV	kW	448.871	233.178	215.693
Net Eff LHV	%	53,6%	70,6%	35,1%

- Other Examples
 - Case of 3P-RH
 - GTs with different Exhaust T

- Other Examples: RH Option

Thermoflow

GT PRO 28.0 - C:\	Users\imart\Documents\The	rmoflow 28\IMG\FAW\FAW	MxN\H1b_GT+HRSG-3PRH_	RHT.GTP		>
File View Options	Tools Window Excel Li	ink Scripts Help				
Navigator 📃	HRSG Main Inputs	Thermodynamic Design	Hardware Design	Radiant Boile	er Miscellaneous	Equipment Options
New Session		Assumptions		1		
Start Design	1. Percentage of SO2 conv	rented to SO3 in exhaust gas		5 %		
Plant Criteria	2. Use reheater(s) to heat ex	xternal steam; 0=no, 1=yes				
GT Selection	External steam mixing with	h IP steam before reheater(s); 0	=no, 1=yes	1		
GT Inputs	4. Debit reheat steam from p	process condensate return; 0=y	es, 1=no	1		
ST-HRSG	5. External steam massflow	at reheater(s) inlet		277 t/h		
HRSG Inputs	7. Hot reheat steam pressur	re at deliveru		32,7 bar		
Water Circuits	8. Desired hot reheat steam	temperature at delivery		581,2		
HRSG Layout	9. Steam addition from exter	rnal source to HPB		0 t/h		
Cooling System	10. Steam addition from exte	ernal source to IPB		0 t/h		
ST Inputs	11. Steam addition from exte	ernal source to LPB		0 t/h		
Environment	12. Disable HRSG cross flow	w corrections: 0=no, 1=yes		0		
Other PEACE	13. Compute HRSG radiation	n Q from DB or GT exhaust: 0=j	ves 1=no	1		
Economics	14. Fin bulk averaged temp.	conductivity correction: 0=yes	1=no	0		
Gasification	15. HRSG heat exchanger g	gas side pressure drop correctio	n factor	1		
Desalination	16. Use baffle for HRSG hea	at exchangers w/ staggered tub	ing: 0=yes, 1=no			
Compute	17. Exhaust gas 505 ppm th 18. Hydrostatic correction fo	nreshold to trigger warnings and ir drum elevation (0 to 6)	actions	0		
Text Output	19. Dilution air fan aerodynar	mic efficiency		87 %		
Graphics Output	20. Dilution air fan electric ar	nd mechanical efficiency		90 %		
PEACE Output	21. Additional pressure rise for	or dilution air fan		0 millit	bar	
Coming on	22. Dilution air fan sizing; 0=0	Current heat balance, 1=User-d	efined	0		
Carrying on	23. Desired exhaust gas tem	nperature after dilution for fan siz	ing	400 C		
Multiple Designs (MACRO)	22. Correction factor for HRS	SG radiation Q from DB or GT e	xhaust	1		

Thermoflow Design M on N Systems in GT Pro

- Other Examples: RH Option

- Other Examples: Different Exhaust T
 - If the 2 GTs have a different exhaust T you can add a Duct Burner to the plant with a lower Tex, to match the final steam Temperatures
 - In GT Pro DB will come automatically to achieve the desired steam T
 - In GT Master you need to define a Control Loop to run the DB at any condition

GT Pro

GT Master

Design M on N Systems: Simulation in GT Master

- M on N Systems, same GT Models:
 - Only 1 input for GT / HRSG: all of them run on the same condition
 - You can:
 - Operate on simple cycle
 - Switch off some of the GTs
 - Use TFX if you need to run the GTs at different condition
- M on N Systems, different GT Models:
 - Run the 2 Files 2b & 3 separately, iterative process on Pressures-mass flows, then integrate the results
 - Use Thermoflex

- In **Steam Pro** the user can select:
 - For Conventional Boilers **M** units \rightarrow Boiler-ST = 1 unit
 - For CFB-BFB and Grate Boilers: **M** units comprised by **N** Boilers + **1** ST
 - You cannot link STP files with TFX
 - You can import STP files into TFX
 - \rightarrow Be carefull, only 1 Unit can be imported from STP into TFX
- In **Steam Master** you can:
 - For Conventional Boilers run M units
 - For CFB-BFB and Grate Boilers you can switch off Boilers of each Unit
 - STM files can be linked to TFX
 - STM files cannot be imported into TFX

- → Example: How to create a plant with **2 different Boilers** feeding 1 ST:
 - Create 2 STP files:
 - File 1: Boiler (1) + ST (1) + FWHS (1) + CS (1) \rightarrow HP1 flow
 - File 2: Boiler (2) + ST (2) (no FWH, no CS) \rightarrow HP2, cRH2, hRH2 and FW2 flows
 - Add / Extract the steam flows from File 2 to File 1 at appropriate locations
 - Steam Cycle specification to Steam Flow (HP1 + HP2)
 - Steam Addition to Port 0 (SPHR), massflow = HP2
 - Steam Extraction (Process) from Port 1 (HPTex), mf = cRH2
 - Steam Addition to Port 2 (IPTin), mf = hRH2
 - Water Extraction "after FWH8", mf = FW2
 - Run and save as File 1b

- Example: How to create a plant with 2 different Boilers feeding 1 ST:

- Example: How to create a plant with 2 different Boilers feeding 1 ST:

Process Streams	Steam A	dditions	ater Addition and Extraction	External Steam Sources	Ĩ		
Water Addition Number of water addition Addition loca No. 1 No. 2 No. 2	s tion T	Mass flow rate	Pressure NA bar NA bar	Temperature NAC NAC			
Water Extraction	yns -		per Dar				
No. 2	cation	Desired mass flow 582 t/h NA t/h		Wate	r Extra	ction,	FW2
No. 3	Ŧ	NA t/h					

- Example: How to create a plant with 2 different Boilers feeding 1 ST:

Components Design from each file

	Boiler	ST	FWHS	CS
File1	Boiler 1	ST 1	FWHS 1	CS 1
File2	Boiler 2	ST 2		
File1b	Boiler 1	ST	FWHS	CS

Integration of Results

		Total	File 1b	File 2
Gross Power	MW	559,7	559,7	125,6
Auxiliaries **	MW	?	24,4	12,8
Net Power	MW	?		
Heat Input-HHV	MW	1.378,0	863,9	514,1
Gross Efficiency	%	40,6%		
Cost Estimation	MUSD	?	940,8	489,0

- Example: How to create a plant with 2 different Boilers feeding 1 ST:

Integration of Results:

- Auxiliaries associated to the Boilers should be OK in File 1b and File 2
- Auxiliaries associated to the Steam Cycle:
 - Remove the CFP and BFP from File 2, depending on the pumps configuration
 - Check the Additional PEACE and Miscellaneous
- Cost Estimation:
 - Remove the cost associated to the steam cycle in File 2
 - Check the cost of the general and auxiliary equipment, Tanks, Buildings, ...

Design M on N Systems in Thermoflex

- In THERMOFLEX the user can:
 - Standalone: Any combination of GTs-HRSGs-Boilers-STs-Cooling Systems, ...
 - Link with Files with GTP-GTM-STM
 - Import Files from GTP-GTM-STP
 - → Example: Design M on N Combined Cycle plant with variable M and N using scripts → Sample (S2-37)

Design M on N Systems using THERMOFLEX

\rightarrow Link GTP-TFX, only "connections"

HP Steam from File3 SH addition to File 2b SH exit

		Summar	y of TFX & Lin	ked Files			
		Gross power	Net power	Net HR	Net Eff	Fuel input	[kW]
File name		[kW]	[kW]	[kJ/kWh]	[%]	LHV	HHV
F2_1XGT1-HRSG1-ST.GTP		169299	164559	5101	70,57	233178	258738
F3_1XGT2-HRSG2.GTP		78056	75758	10250	35,12	215693	239336
THERMOFLEX							
Totals	Totals 24			6724	53,54	448871	498074
	Р	erformance of	Gas Turbines	in GT PRO File	S		
			Gross Power	Gross LHV eff	Gross LHV HR	Exh. Flow	Exh. Temp.
File name	GT name	Units	[kW]	[%]	[kJ/kWh]	[t/h]	[C]
F2_1XGT1-HRSG1-ST.GTP	SIE 401	1	83585	35,85	10043	815,5	582,3
F3_1XGT2-HRSG2.GTP	AE64.3A	1	78056	36,19	9948	766.4	584.6

Thermoflow Design M on N Systems using THERMOFLEX

 \rightarrow Link GTP-TFX, GT-HRSG in GTP, ST-CS in TFX

Thermoflow Design M on N Systems using THERMOFLEX

 \rightarrow Off Design, GTP Links converted to GTM

hermoflow Design M on N Systems using THERMOFLEX

→ Import from GTP (GTM) into TFX

- Import File 2b
- Import File 3
- Copy All in File 3 and Paste it into File 2b
- Change sources / sinks / process by connections & add Mixers /Splitters:
 - HP steam from HRSG2: mix with HP steam from HRSG1, before ST
 - IP steam from HRSG2: mix with IP steam from HRSG1, before ST
 - Feedwater from Condensate Pump: Split to HRSG2
- Run in design mode, TD-ED
- Run in Off Design mode

\rightarrow Import from GT Pro: redesign

 \rightarrow Import from GT Master: hardware fixed, simulation

Thermoflow Design M on N Systems using THERMOFLEX

 \rightarrow Import from GTP (GTM) into TFX

Thermoflow

Design M on N Systems using THERMOFLEX

\rightarrow Import from GTP (GTM) into TFX

Final Plant Results

	Unit		LHV			HHV				
Net fuel/energy input	[kW]		448933			498142				
Gross heat rate	[kJ/kWh]		6539							
Net heat rate	[kJ/kWh]		6721			7458				
Gross electric efficiency	[%]		55,05							
Net electric efficiency	[%]		53,56			48,27				
CHP efficiency	[%]		53,56							
PURPA efficiency	[%]		53,56							
Gross power	[kW]		247138							
Net power	[kW]		240459							
Total auxiliaries and transformer losses	[kW]		6679							
Net process heat output	[kW]		0							
POWER DEVICE(S)										
Generator	Component	Shaft	Shaft [kW]	Eff [%]	Multiplier	Gen [kW]	Accounted [kW			
	ST Assembly [1]: ST Group [7]		33657							
	ST Assembly [1]: ST Group [8]		53269,3							
ST Assembly [1] generator			86926,3	98,52	1	85635,6	85635,6			
Gas Turbine (GT PRO) [2] generator			86559,7	96,47	1	83505,5	83505,5			
Gas Turbine (GT PRO) [46] generator			80491,7	96,9	1	77997,2	77997,2			
Total Generator(s)						247138,2	247138,2			

Project Cost Summary (USD)	Reference Cost	Estimated Cost	
Power Plant			
I. Specialized Equipment	93.832.000	98.524.000	USD
II. Other Equipment	7.945.000	8.342.000	USD
III. Civil	11.994.000	13.625.000	USD
IV. Mechanical	14.777.000	17.345.000	USD
V. Electrical Assembly & Wiring	4.978.000	5.855.000	USD
VI. Buildings & Structures	6.711.000	7.718.000	USD
VII. Engineering & Startup	13.900.000	13.921.000	USD
VIII. Linked Files & Other Systems	0	0	USD
Subtotal - Contractor's Internal Cost	154.136.000	165.329.000	USD
IX. Contractor's Soft & Miscellaneous Costs	41.001.000	46.877.000	USD
Contractor's Price	195.137.000	212.205.000	USD
X. Owner's Soft & Miscellaneous Costs	17.562.000	19.098.000	USD
Other Standalone Plants (Owner's Cost)	0	0	USD
Total - Owner's Cost	212.700.000	231.304.000	USD
Nameplate Net Plant Output	240	240	MW
Price per kW - Contractor's	811,5	882,5	USD/k₩
Cost per kW - Owner's	884,6	961,9	USD7k₩
* Cost estimates as of September 2018.			
			<u> </u>

These results are based on simplified annual model		
defined by the user.		
Annual Electricity Exported	1.580	10^6 kWh
Annual Heat Exported	0	TJ
Annual Fuel Imported	10.618	TJ LHV
Annual Water Imported	1.430	10^6 I
Annual CO2 Emission	582	ktonne
Annual Desal Water Exported	0	MM imperial gal.
Annual Hydrogen Exported	0	TJ LHV
Annual Syngas Exported	0	TJ LHV
Annual CO2 Captured	0	ktonne
Annual Limestone Consumed	0	ktonne
Annual Lime Consumed	0	ktonne
Annual CO2 Capture Solvent Consumed	0	ktonne
Annual Combustion Waste Production	0	ktonne
Annual FGD Waste/Byproducts Production	0	ktonne
Annual Activated Carbon Consumed	0	ktonne
Total Investment	231.304.000	USD
Specific Investment	961,9	USD per kW
Initial Equity	69.391.180	USD
Cumulative Net Cash Flow	535.235.600	USD
Internal Rate of Return on Investment (ROI)	13,339	*
Internal Rate of Return on Equity (ROE)	24,429	%
Years for Payback of Equity	4,707	years
Net Present Value	111.567.400	USD
Break-even Electricity Price @ Input Fuel Price (i.e. Levelised Cost of Electricity)	0,0557	USD/kWh
Break-even Fuel LHV Price @ Input Electricity Price	7,073	USD/GJ
	1	

f Thermoflow

Design M on N Systems in Thermoflex

Thermoflow Modelling M on N Systems

 \rightarrow Conclusions: Which Option to choose?

- Programs you have licenced
- Your ability with the programs GTPM-TFX, ...
- Stage of Project: feasibility, conceptual, matching a HB, vendor data, ...
- Level of details you need
- Plant complexity
- Flexibility you require

- ...

Q & A Session

- Please forward your questions on the WebEx Chat
- Further questions by email to: info@thermoflow.com

- PP Presentation will be available on the Website / Tutorials
- Video will be available on the Service Center

Thank you!

IGNACIO MARTIN - SPAIN martin@thermoflow.com